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Abstract

Natural Language Processing (NLP) is the process of helping computers under-
stand and interpret human language (which is hard to do without an inherent knowl-
edge of tone, connotation, sarcasm, etc.). “Fake news” and the validity of news
articles, Tweets, and more are at the forefront of national conversations around free
speech and the spread of misinformation. This project uses NLP to classify news
articles as either real or fake through the use of lemmatization, stop words, bag-of-
words feature extraction, a multilayer perceptron neural network, a recurrent neural
network, and other machine learning models.

Keywords: Natural Language Processing, Fake news, Lemmatization, Bag-of-words, Deep
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1 Introduction

“Fake news” is a term that has risen to the forefront of the national conservation over

the past few years. According to a 2019 Pew Research Center survey,1 Americans rate

fake news as a larger problem than violent crime, climate change, and racism (among

other categories). In addition—according to the same survey—68% of Americans say that

fake news has a big impact on their confidence in government. At its core, fake news

is simply defined as news stories that are false or fabricated. Fake news stories can be

“propaganda that [are] intentionally designed to mislead the reader” or “clickbait” stories

that are designed for “economic incentives.”2

Due to the issue of fake news, verifying the validity of news articles (fact-checking) has

become an increasingly important job for news network. This can be seen in the last 2020

presidential debate between Joe Biden and Donald Trump, where multiple news sources

(e.g. the New York Times3) reported on the validity of each candidate’s claims. Websites

such as Snopes4 and PolitiFact5 do this fact-checking on a daily basis. The dataset used in

this project comes from the fact-checking website PolitiFact (see Section 3).

However, fact-checking is not perfect. There exist limitations from fact-checking web-

sites like PolitiFact, such as confirmation bias: “people may not be likely to fact-check a

story that aligns with their pre-existing beliefs.”6 Additionally, manual fact-checking is a

time-intensive process. Thus, there is motivation to provide another source of fake news

assessment: a statistical model that aims to predict fake news using Natural Language

Processing. Designing a model that does so is the goal of this project.

1Mitchell et al. (2019)
2Desai (n.d.)
3Shear (2020)
4Snopes (n.d.)
5PolitiFact (n.d.)
6Asr & Taboada (2019)
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2 Background

2.1 Natural Language Processing

Natural Language Processing (NLP) is the process of helping computers understand and

interpret human language (which is hard to do without an inherent knowledge of tone,

connotation, sarcasm, etc.).7 NLP is important because it allows computers to read text

(or listen to speech) and interpret what messages are being conveyed. It is used in tasks such

as sentiment analysis, language translation, or—in the case of fake news—classification.

NLP is advantageous because it is able to analyze language-based data “in a consistent

and unbiased way.”8 Note that the notion of algorithmic bias9 is a complex topic that is

beyond the scope of this project. Thus, for the purposes of this project, the NLP used

assumes unbiased classification. Assuming this sort of unbiased classification, using NLP

to classify fake news is clearly beneficial.

In this project, NLP is used to extract features from a set of PolitiFact claims. Those

features, and the associated truth rating of each claim, are then used to fit multiple machine

learning algorithms with the end goal of classifying fake news with a high accuracy. In order

to extract features from text, lemmatization and stop words are first used to reduce the

size of the overall vocabulary. Then, the bag-of-words model, which is represented by a

document-term matrix (DTM), is used to create a matrix of features.

2.1.1 Reducing a Vocabulary with Lemmatization and Stop Words

In NLP, a text corpus refers to the collection of text documents being used. In the context

of this project, the text corpus is all of the PolitiFact claims used. A vocabulary, in NLP,

is then the set of unique words used in a text corpus.10 When extracting features from text

in NLP, a common problem is that the vocabulary is too large. This is due to the fact that

many words that have very similar meanings (such as “cook”, “cooks”, and “cooking”)

7Cybiant (n.d.)
8What Is Natural Language Processing? (n.d.)
9Algorithmic bias describes systematic and repeatable errors in a computer system that create unfair

outcomes, such as privileging one arbitrary group of users over others. Algorithmic Bias (2020)
10Vocabulary - Natural Language Processing with Machine Learning (n.d.)
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are each included as a separate word in the vocabulary. In addition, many words that (in

most contexts) don’t carry meaning—such as “and”, “of”, and “the”—significantly increase

the vocabulary length. To combat this, stemming/lemmatization and the removal of stop

words can be used.

Stemming is a process used in NLP that removes the ends of words in order to get

rid of words that have derivational affixes.11 There are standard stemming libraries that

remove endings of words such as “-ing”, “-es”, and “-ed”. In addition, users can create

their own custom functions to remove endings of words that are not included in a stemming

library. In stemming, the words “dog”, “dogs”, and “dog’s” would all be cut down to the

word “dog”. This helps to reduce the number of words that are counted in a document.

However, a word such as “doggie” would likely be missed by stemming (unless a custom

function had “-gie” set to be removed). Because of such exceptions, lemmatization is used

in this project instead of stemming.

Lemmatization has the same end goal of stemming, but uses a vocabulary of base words

(lemmas) that words in a document are matched to (and then changed to).12 An example

of when lemmatization is preferable over stemming is with a word such as “better”, which

has “good” as its lemma. This sort of word would be missed with stemming, but caught

with lemmatization (which would have a dictionary matching these two words together).

Another example of when lemmatization is preferable over stemming is with the would

“caring”. Lemmatizing “caring” gives us “care”, but stemming would likely give you “car”

(since a stemming function would erroneously try to remove just the “-ing”). Lemmatiza-

tion is useful since it is able to reduce the vocabulary size by condensing words that have

different textual representations (but are the same words otherwise) into just one word in

a vocabulary.

Stop word removal is the process of removing specified words from a vocabulary with

the goal of reducing the vocabulary size. Stop words are words such as “and”, “the”,

and “as” that and add noise to NLP feature extraction and don’t provide any interesting

insights. Custom stop words (depending on the context of the problem at hand) can also

be added to a stop words dictionary.

11Stemming and Lemmatization (n.d.)
12Stemming and Lemmatization (n.d.)
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A full working example of how to clean a single text entry to do the above discussed

lemmatization and stop word removal (as well as some other standard text cleaning oper-

ations) can be seen in the code chunk below. A very similar text cleaning function is used

to clean the PolitiFact claims in this project (and can be seen in Section 7.1).

# this is our text input

trump_claim_raw <- "’Trump approval rating better than Obama and Reagan at

same point in their presidencies.’"

# a function to perform text cleaning

clean_text <- function(input_text) {

# create a list of all of the stop words we want to remove from our corpus

# note that ‘stopwords("en")‘ is a pre-defined list of stop words, but we

# can also add custom stop words (here Obama and Reagan are added)

all_stops <- c("Obama", "Reagan", stopwords("en"))

# remove any punctuation from the text

output_text <- removePunctuation(input_text) %>%

# remove our custom list of stop words

removeWords(all_stops) %>%

# make all letters lowercase

tolower() %>%

# lemmatize the words in the text

lemmatize_strings() %>%

# remove any numbers in the text

removeNumbers() %>%

# get rid of any extra white space

stripWhitespace()

return(output_text)

}
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# apply the text cleaning function

trump_claim_clean <- clean_text(trump_claim_raw)

# note how "better" becomes good and "presidencies" becomes "presidency"

# also notice that "Obama" and "Reagan" were removed

trump_claim_clean

## [1] "trump approval rate good point presidency"

2.1.2 Bag-of-Words Model for Feature Extraction

Once a vocabulary has been created—and its size reduced—features can be extracted using

the bag-of-words model. The bag-of-words model is a way to extract features from text

by describing the occurrence of each word in the vocabulary within a single document

(and discarding any information about the order of those words).13 Each document in a

text corpus (each PolitiFact claim) consists of a score for each word in the vocabulary. In

the most simple case, that score is simply the number of times each word in a document

occurs in the vocabulary. Note that there are many alternative scoring metrics here, one

such being the term frequency-inverse document frequency (tf-idf).14 (Tf-idf is used as the

scoring metric in this project.)

In practice, bag-of-words feature extraction is represented by a document-term matrix

(DTM). A DTM is “a matrix that describes the frequency of terms that occur in a collec-

tion of documents” where “rows correspond to documents in the collection and columns

correspond to terms.”15 To best illustrate this, an example of creating a DTM (using term

frequency to fill in cell values) with the text2vec package can be seen in the code chunk

below. Here, we can see a basic example of how to extract features from an initially un-

cleaned text corpus by first reducing the vocabulary size and then creating a DTM. The

resulting DTM can be seen in Table 1.

13Brownlee (2017)
14Tf-idf is used to increase the weight of terms which are specific to a single document (or handful of

documents) and decrease the weight for terms used in many documents. Analyzing Texts with the Text2vec

Package (n.d.)
15Document-Term Matrix (2020)
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# our initial text corpus

car_text <- rbind.data.frame("Bob really likes cars",

"Sally really, really does not like cars",

"Sally only likes 3 types of cars")

# add unique document ids

car_text <- cbind(car_text, c(1, 2, 3))

colnames(car_text) <- c("text", "id")

# clean the text using the same cleaning function from before

# in order to reduce the vocabulary size

car_text <- car_text %>%

mutate(cleaned_text = clean_text(text))

# tokenize the text into individual words

tokenizer_car <- word_tokenizer(car_text$cleaned_text) %>%

itoken(ids = car_text$id, progressbar = FALSE)

# create our vocabulary using the tokenized words

car_vocabulary <- create_vocabulary(tokenizer_car)

# create a tokenizer using each word in the vocabulary

vocabulary_vectorizer <- vocab_vectorizer(car_vocabulary)

# finally, create our DTM

car_dtm <- create_dtm(tokenizer_car, vocabulary_vectorizer)

# convert the DTM to a matrix so that we can print it

car_dtm <- as.matrix(car_dtm)

In Table 1 we observe that the vocabulary in this example has been trimmed to six

words. Words such as “does”, “of”, and “only” have been removed and words such as
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Table 1: An example DTM using a term frequency scoring metric

bob type sally car like really

1 1 0 0 1 1 1

2 0 0 1 1 1 2

3 0 1 1 1 1 0

“likes” have been lemmatized to “like”. Each row represents each of document and each

column represents a word in the vocabulary. Each cell tells us how many times each

vocabulary word appears in a specific document. For example, the first document has one

occurrence of “really”, the second document has two occurrences, and the third document

has none.

2.2 Deep Learning Models

2.2.1 Multilayer Perceptrons

Deep learning is a subfield of machine learning that is concerned with artificial neural

networks, which are algorithms inspired by the human brain. Neural networks—which is

what deep learning models refer to—are beneficial because results tend to get better with

more data and larger models (at the expense of computation and run-time). They are

also able to “perform automatic feature extraction from raw data,” which makes them well

suited to NLP tasks.16

To understand how neural networks work we must first understand their building blocks,

perceptrons. A perceptron is made up of four parts: input values, weights and bias, a net

input function, and an activation function. This can be seen illustrated in Figure 1.17

16Brownlee (2019)
17What Is Perceptron — Simplilearn (n.d.)
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Figure 1: A diagram of a basic perceptron

The input values, represented by the first row of nodes in the above figure, are combined

with the weight values in the second row of nodes (weight values are initially randomized).

The perceptron then receives this net input and passes it to the net input function. This net

input is passed to the activation function which decides (based on the net input) whether

or not to generate a +1 or a −1. This generated output is then the predicted class label

of the example. During the learning phase, the predicted class labels are used to calculate

the error of each prediction and update the weights accordingly.18

When more than one perceptron is connected, stacked in several layers, a neural network

is created. In their most basic form, neural networks consist of an input layer of features,

a hidden layer, and an output layer. A multilayer perceptron (MLP) is a neural network

with at least one hidden layer. Figure 2 displays a MLP where each node in the input

and hidden layer represent an individual perceptron.19 Each perceptron in each layer is

connected to every other perceptron in the following layer with weighted edges. Because

there can be a large number of nodes in each layer, a MLP can quickly become complex. In

a similar way to individual perceptrons, output values are predicted by stepping through

the neural network during the feedforward phase. Edge weights between neurons are then

updated during training through a process called backpropagation.20 This feedforward

18ReginaOfTech (2019)
19Perceptrons & Multi-Layer Perceptrons: The Artificial Neuron - MissingLink (n.d.)
20“Backpropagation is an algorithm for supervised learning of artificial neural networks using gradient

descent. Given an artificial neural network and an error function, the method calculates the gradient of

the error function with respect to the neural network’s weights.” Backpropagation (n.d.)
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and backpropogation process repeats for a user-defined number of times. Normally, when

evaluating a neural network, you should repeat this process until the edge weights are able

to maximize classification accuracy on a validation set.

Figure 2: A diagram of a multilayer perceptron

Setting the number of hidden layers in a MLP (as well as the number of nodes in each

hidden layer) is an issue of model tuning and can vary from model to model. However, there

is rarely much practical need to have more than two hidden layers, and one is sufficient in

most problems.21 There is no rule for how many nodes each layer should have, but a general

rule of thumb is this: the input layer should have as many nodes as there are features and

a hidden layer should have the average of the number of nodes in the input layer and the

number of nodes in the output layer.

2.2.2 Recurrent Neural Networks

Recurrent neural networks (RNN) are designed for problems with a notion of sequence and

add a representation of memory to a neural network. For this reason, RNNs are well suited

to NLP tasks where the sequencing of words in a sentence matters. RNNs are able to keep

21Model Selection - How to Choose the Number of Hidden Layers and Nodes in a Feedforward Neural

Network? (n.d.)
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track of sequencing by allowing neurons to pass values sideways within a given layer (in

addition to being able pass values forwards as normal).22

It’s important to note that since RNNs require a notion of sequence, the bag-of-words

model mentioned previously needs to be slightly tweaked. In RNNs, each word in the

vocabulary needs its own individual identifier (in the form of an integer). Then, after text

cleaning, documents are simply translated from word to (id) number. This can still be

represented by a DTM where the number of columns represents the maximum number of

words found in a document within the text corpus and the number of rows represents the

total number of documents. Each cell value is filled with the numerical representation of

each word in a document (in the original order they appeared in). If a given document is

shorter than the maximum document length, then 0’s are simply added to the end of it.

22Brownlee (2016)

11



3 Data

The data used in this project comes from PolitiFact, a fact-checking website. Articles, their

claims, and the associated truth-levels of those claims are web-scraped from PolitiFact by

the Discourse Processing Lab at Simon Fraser University23. The Discourse Processing Lab

provides a web-scraping tool for multiple fact checking websites, including PolitiFact and

Snopes. The dataset web-scraped from PolitiFact was chosen over the one from Snopes

due to the fact that PolitiFact has six levels of truth compared to Snopes’ two. The web-

scraping works in two parts: first, information is downloaded from the selected source such

as the claim being assessed, the assessment of that claim, and all links to articles that are

mentioned in the assessment. (That information is all added to the final dataset.) Then,

the link most likely to contain the article being labeled/assessed is selected, and the original

text from that article is downloaded and added to the dataset.

The PolitiFact dataset includes columns such as the original PolitiFact URL, the Poli-

tiFact truth rating, the claim of the article being assessed, the URL and text from the

article where the claim came from, and the category into which the claim being assessed

falls. The levels of truth are described by PolitiFact as the following:

• True (1): The statement is accurate and there’s nothing significant missing.

• Mostly True (2): The statement is accurate but needs clarification or additional

information.

• Half-True (3): The statement is partially accurate but leaves out important details

or takes things out of context.

• Mostly False (4): The statement contains an element of truth but ignores critical

facts that would give a different impression.

• False (5): The statement is not accurate.

• Pants on Fire! (6): The statement is not accurate and makes a ridiculous claim.

To simplify the task of classification in this project, only two of the above truth levels

were used in this project. Specifically, only the PolitiFact claims rated as “True” (1) or

“Pants on Fire!” (6) were used. A process where all ratings from 1-3 were classified as

23Taboada & Torabi Asr (n.d.)
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“True” and all ratings from 4-6 were classified as “False” was attempted, but this resulted

in worse model performance. More discussion of this can be found in Section 6.1.

3.1 Data Cleaning

Each entry in this dataset contains a claim that PolitiFact has assigned a certain truth

value. Since multiple external news articles can discuss the same claim, there can be a

single PolitiFact claim/associated truth value associated with multiple different articles,

and thus multiple different bodies of text. For example, the first three entries in the raw

dataset are all from the same PolitiFact entry which rates the phrase “Trump approval

rating better than Obama and Reagan at same point in their presidencies.” as Mostly

True. The reason there are three entries from this same PolitiFact article (which are all

from the exact same PolitiFact URL) is because multiple news sources (in this case Fox,

NBC, and FiveThirtyEight) all reported on this claim. In an effort to cut down on the

number of duplicate claims such as these, I have only kept the top entry from each unique

PolitiFact URL (even though the three articles contain different textual content). The

reason for the removal of duplicate entries is further discussed in Section 6.1.

In addition to removing duplicate PolitiFact entries, the two targets of interest (men-

tioned in the previous section) were filtered, selected, and converted to numbers. After

this, the remaining data cleaning involved tidying the text of the claims associated with

our different targets as well as reducing the size of the overall vocabulary of words (for

the sake of bag-of-words feature extraction). In particular, this involved using basic text-

cleaning methodologies (such as removing any punctuation), removing stop words, and

using lemmatization. To see the full data cleaning done in this project, see Section 7.1.

3.2 Exploratory Data Analysis

After the full text cleaning and vocabulary reduction described previously (and shown fully

in Section 7.1), the vocabulary has 806 terms (across 1911 documents). To check if this

text cleaning was done properly, we can compare a few selected article claim documents

before and after they were cleaned:

## [1] "\"Investigators: Anthony Bourdain was killed by Clinton operatives.\""
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## [1] "investigator anthony bourdain kill clinton operative"

## [1] "Says that people \"went out in their boats to watch\" Hurricane Harvey."

## [1] "say people go boat watch hurricane harvey"

Since everything is now working as expected, the final thing to explore is the most

frequently used terms in the vocabulary.24 To get a sense of the the most frequently used

terms in the vocabulary, Figure 3 displays the top ten most frequently used words in the

PolitiFact text corpus.
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Figure 3: A barplot showing the most frequent words in the PolitiFact vocabulary after

text cleaning

It appears that the word “say” was by far the most used word, with 417 occurrences.

This is a fairly common word (that is not a stop word), so this makes sense. It is reasonable

24Note that it doesn’t make sense to visualize the DTM here because it is far too large to fully look at,

and DTMs are inherently sparse. The DTMs were examined and work properly. They can be seen further

in 7.1.
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to keep “say” in this context as the act of “stating” something may be important in

classifying fake news. We also observe that no classic stop word (such as “the”) appears

in this barplot, which is what we expect. Lastly, words such as “obama”, “president”, and

“trump” also appear in the bar plot. Since PolitiFact primarily deals with fact-checking

political claims, this makes sense.

With successful text cleaning and feature extraction, it is time to fit machine learning

models to the data. (Note that the full code for the process of feature extraction mirrors

that of the previous example in Section 2.1.2 and can be seen fully in Section 7.1.4.)
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4 Model Fitting

In this project, seven different machine learning models were fit in an attempt to classify

fake news. The models used were:

• Naive Bayes

• Basic Logistic Regression

• Lasso Regression

• Support Vector Machine

• Random Forest

• Multilayer Perceptron

• Recurrent Neural Network

The first five models were fit in order to get a baseline sense of how non-deep learning

algorithms performed when classifying fake news. Then, the two deep learning models were

created in an effort to improve on the previous models. Since this process requires quite

a bit of code as well as additional explanation for each model, it has been moved to the

Appendix in Section 7. More specifically, the entire process of model fitting (with code)

can be found in Sections 7.2 and 7.3 for the baseline models and deep learning models

respectively.
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5 Results

Table 2: Model accuracies and their corresponding confidence intervals

Model Accuracy 95% CI

Naive Bayes 0.6 [0.55, 0.65]

Basic Logistic Regression 0.62 [0.57, 0.67]

Lasso Regression 0.7 [0.65, 0.74]

Support Vector Machine 0.69 [0.64, 0.74]

Random Forest 0.71 [0.66, 0.75]

Multilayer Perceptron 0.7 [0.65, 0.75]

Recurrent Neural Network 0.68 [0.63, 0.73]

Table 2 displays the resulting accuracies and 95% confidence intervals for each of the

models run in this project. Basic approaches, such as Naive Bayes and basic logistic

regression performed noticeably worse than the other five models. It also appears that

the deep learning algorithms did not perform significantly better than any of the other

algorithms (besides Naive Bayes). Note that the confusion matrices for each of the models

can be found in Section 7.

To examine these results further, we can visualize the confusion matrix of the random

forest model (which did among the best out of all of the models).
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Figure 4: Confusion matrix for the random forest model

Figure 4 shows that there were 147 true positives, 124 true negatives, 51 false positives,

and 61 false negatives. Although the overall accuracy of around 71% is not very high, we

have a reasonable balance between the sensitivity and specificity of the predictions.
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6 Conclusion

The goal of this project was to use Natural Language Processing to classify fake news.

To do so, a dataset web scraped from PolitiFact was used. The text was cleaned, the

vocabulary reduced, and features were extracted. Then, seven different machine learning

models were fit using these features. The two most basic algorithms (Naive Bayes and

basic logistic regression) performed the worst with accuracies of 60% and 62% respectively.

The other five models performed relatively equally: they all had accuracies around 70%.

An automated fake news classifier that performs with a 70% accuracy is by no means

useless, but it is far from being a robust classifier. With a topic such as fake news, which

has already hurt much of the American public’s perception of the government, any mis-

classification is exacerbated. A 70% accurate fake news classifier used in practice has poor

implications in terms of improving the public’s trust in what is fake and what is not. Thus,

far more work is needed in order to create a reliable fake news classifier. Luckily, there are

clear areas in which this work can be improved upon due to the limitations laid out in the

next section.

6.1 Limitations

Among other things, the raw PolitiFact dataset used in this project contains the original

PolitiFact URL, the PolitiFact truth rating, the claim of the article being assessed, and

the URL and text from the article where the claim came from. The original idea of this

project was to use the original article text (along with the PolitiFact truth rating) to train

a fake news classifier. However, each article’s text is not necessarily making the claim that

PolitiFact is grading in each entry since each PolitiFact grade is based on the claim that

an article is reporting on, and not the article itself.

For example, if an article is reporting on a claim that is false—and casting the same

doubt on that claim that PolitiFact does with their truth rating of “False”—then the article

text itself is not necessarily false (even though the claim it’s reporting on is). This means

that the target of “False” would not be aligned with the article text. There’s no way to

check whether or not an article’s text is casting doubt on a claim rather than presenting the

same claim that PolitiFact is fact-checking without manually going through each article.
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Since this is infeasible, the project switched from using the original article text in feature

extraction to the claim being graded by PolitiFact. This meant that duplicate PolitiFact

entries could be removed from the dataset (as they all have the same claim and truth level).

Additionally, this project initially tried to classify all six different PolitiFact truth levels.

In the end, only the PolitiFact claims rated as “True” (1) or “Pants on Fire!” (6) were used.

This was done as a way to simplify the many models fit in the project as well as to increase

model performance. A process where all ratings from 1-3 were classified as “True” and all

ratings from 4-6 were classified as “False” was attempted, but this resulted in worse model

performance. The reason for this is likely because article claims are inherently very short

pieces of text and because determining the difference between a “Half-True” and “Mostly

False” article is a very difficult task when only looking at an article’s claim by itself.

The many models fit in this project suffered at the expense of the amount of data

available. After dealing with the limitations mentioned above, only 1911 rows were left

in the dataset. This is not nearly enough data in the context of NLP, especially when

using deep learning algorithms. In standard NLP deep learning problems, datasets have

somewhere on the order of tens of thousands of observations (instead of 1911 in the case

of this project).25

6.2 Future Work

The largest areas for future work in this project are to collect more data and to fine tune

the deep learning methods used. As mentioned in Section 6.1, the amount of data used in

this project was not on the same scale as other NLP deep learning models. The collection

of more—and higher quality data—is paramount in increasing the accuracy of a fake news

classifier. Additionally, there is much work to be done to improve the performance of the

models used in this project. A limited amount of hyperparameter tuning was done in this

project, as performing robust hyperparameter tuning for seven different models is beyond

the scope of this project. In particular, there is much work to be done in fine-tuning the

deep learning models due to their inherent “black box”26 nature.

25How to Build a Neural Network With Keras Using the IMDB Dataset (n.d.)
26In machine learning, “black box” refers to the idea that “data goes in to a model, decisions come out,

but the processes between input and output are opaque.” Black Box (n.d.)
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7 Appendix

The appendix walks through all of the code performed in this project including data wran-

gling, feature extraction, and model fitting.

7.1 Data Wrangling/Feature Extraction

7.1.1 Basic Data Wrangling

We begin by reading in our raw data:

politifact_df_raw <- read_csv("../data-raw/politifact_phase2_clean_2018_7_3.csv")

We then clean up the raw data by getting rid of rows with duplicate URLs, getting rid

of targets we don’t care about, and creating two columns for our targets (one numerical,

one categorical) since different models require different variable types for target values. In

addition, we create a unique ID for each row (which consists of an article’s claim and its

PolitiFact truth rating).

# clean up raw data

politifact_df_cleaned <- politifact_df_raw %>%

# get rid of duplicate URLs (reasoning for this is discussed in limitations)

distinct(politifact_url_phase1, .keep_all = TRUE) %>%

# keep only the two targets we care about

filter(fact_tag_phase1 == "True" | fact_tag_phase1 == "Pants on Fire!") %>%

# change desired targets to categorical and numerical

mutate(targets_numerical = as.numeric(ifelse(fact_tag_phase1 == "True", 1, 0)),

targets_categorical = as.factor(ifelse(fact_tag_phase1 == "True", 1, 0))) %>%

# rename the article claim variable

rename(article_claim = article_claim_phase1) %>%

# only keep the variables we care about

select(article_claim, targets_numerical, targets_categorical)
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# add an id

politifact_df_cleaned$article_id <- seq.int(nrow(politifact_df_cleaned))

# take a look at our cleaned dataframe

glimpse(politifact_df_cleaned)

## Rows: 1,911

## Columns: 4

## $ article_claim <chr> "\"When you tally up their representation in Co...

## $ targets_numerical <dbl> 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0,...

## $ targets_categorical <fct> 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0,...

## $ article_id <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, ...

7.1.2 Cleaning the Text/Reducing the Vocabulary Size

Since the article claim column contains messy text data, text cleaning is needed. The

text cleaning done in this project consists of the following: removing punctuation, mak-

ing all letters lowercase, removing English stop words, lemmatizing each word, removing

numbers, and removing any extra white space. Removing stop words, numbers, and lem-

matizing words all leads to a decrease in the size of the overall vocabulary (all unique words

across a set of text).

The clean text function performs the aforementioned text cleaning and vocabulary

reduction:

# a function to perform text cleaning

clean_text <- function(input_text) {

# remove punctuation

output_text <- removePunctuation(input_text) %>%

# make all letters lowercase

tolower() %>%

# remove a custom list of English stop words (from the ‘tm‘ package)

removeWords(stopwords("en")) %>%

# lemmatize the words in the text
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lemmatize_strings() %>%

# remove any numbers in the text

removeNumbers() %>%

# get rid of any extra white space

stripWhitespace()

return(output_text)

}

# an example of using the ‘clean_text‘ function

clean_text("’Trump approval rating better than Obama and Reagan at

same point in their presidencies.’")

## [1] "trump approval rate good obama reagan point presidency"

The clean text function is used to clean up the text in politifact df cleaned.

# clean up the article claim text, create a final dataframe

politifact_df_final <- politifact_df_cleaned %>%

mutate(article_text = clean_text(article_claim)) %>%

select(article_id, article_text, targets_numerical, targets_categorical)

glimpse(politifact_df_final)

## Rows: 1,911

## Columns: 4

## $ article_id <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, ...

## $ article_text <chr> "tally representation congress governorship dem...

## $ targets_numerical <dbl> 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0,...

## $ targets_categorical <fct> 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0,...
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7.1.3 Train/Test Split

In order to evaluate classification models, a training set and a testing set are needed. In

this project, an 80/20 training/testing split is used.

# set the seed to ensure reproducibility

set.seed(2)

# the number of rows in our final data frame

num_politifact_rows <- nrow(politifact_df_final)

# get random row numbers from our data frame (80% of all possible row numbers

# will be stored in ‘random_row_numbers‘ since we have an 80/20 split)

random_row_numbers <- sample(1:num_politifact_rows, 0.8 * num_politifact_rows)

# use our randomly generated row numbers to select 80% of our data for training

politifact_df_train <- politifact_df_final[random_row_numbers, ] %>%

# sort by article id

arrange(article_id)

# and use the remaining 20% of our data for testing

politifact_df_test <- politifact_df_final[-random_row_numbers, ] %>%

arrange(article_id)

# keep track of our target variables in a list

train_targets_numerical <- politifact_df_train$targets_numerical

train_targets_categorical <- politifact_df_train$targets_categorical

test_targets_numerical <- politifact_df_test$targets_numerical

test_targets_categorical <- politifact_df_test$targets_categorical

We next want to make sure our training/testing split has a roughly equal distribution

of each target value.
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prop.table(table(train_targets_numerical))

## train_targets_numerical

## 0 1

## 0.4443717 0.5556283

prop.table(table(test_targets_numerical))

## test_targets_numerical

## 0 1

## 0.4830287 0.5169713

Across our two target variables—where a “false” piece of news corresponds to 0 and a

“true” piece of news corresponds to 1—we observe a 44.4, 55.6 to 48.3, 51.7 training/testing

split. Since the proportion of target values is reasonably even, we can proceed with this

split.

7.1.4 Creating a Document Term Matrix

To create a Document Term Matrix (DTM), the article text needs to be tokenized into

individual words so that an overall vocabulary can be created. Here n-grams are used (from

n = 1 to n = 3). This means that all possible 1, 2, and 3 word combinations are included

in the vocabulary. Note that we must create our vocabulary using only the training data,

since our test data should not be looked at until model evaluation.

Once a vocabulary is created, terms that only appeared once throughout our training

dataset are removed. This reduces the size of the vocabulary terms from 28678 terms to

806, which is a far more manageable number of terms to have in a DTM.

# tokenize the text into individual words

tokenizer_train <- word_tokenizer(politifact_df_train$article_text) %>%

itoken(ids = politifact_df_train$article_id, progressbar = FALSE)
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# this test tokenizer will be used later

tokenizer_test <- word_tokenizer(politifact_df_test$article_text) %>%

itoken(ids = politifact_df_test$article_id, progressbar = FALSE)

# create our vocabulary with the training data

vocabulary <- create_vocabulary(tokenizer_train, ngram = c(1L, 3L))

# we observe 28678 unique terms, this is too large

nrow(vocabulary)

## [1] 28678

# prune our vocabulary to only include terms used at least 2 times

pruned_vocabulary <- prune_vocabulary(vocabulary, term_count_min = 5)

# we now observe 806 unique terms, which is more manageable

pruned_vocabulary

## Number of docs: 1528

## 0 stopwords: ...

## ngram_min = 1; ngram_max = 3

## Vocabulary:

## term term_count doc_count

## 1: account 5 5

## 2: affair 5 5

## 3: affect 5 4

## 4: africanamerican 5 5

## 5: agree 5 5

## ---

## 802: percent 130 102

## 803: obama 131 130

## 804: year 149 130

## 805: state 171 159

## 806: say 417 372
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Now that we have a reasonably sized vocabulary, we can create our training and testing

DTMs.

# create our training and testing DTMs using our tokenizers

vocabulary_vectorizer <- vocab_vectorizer(pruned_vocabulary)

dtm_train <- create_dtm(tokenizer_train, vocabulary_vectorizer)

dtm_test <- create_dtm(tokenizer_test, vocabulary_vectorizer)

We then change our DTMs to hold term frequency–inverse document frequency (tf-idf)

values, which will normalize the DTMs and increase the weight of terms which are specific

to a single document (or handful of documents) and decrease the weight for terms used in

many documents.27

tfidf <- TfIdf$new()

# fit model to train data and transform train data with fitted model

dtm_train <- fit_transform(dtm_train, tfidf)

dtm_test <- fit_transform(dtm_test, tfidf)

# convert our DTMs to a matrix and data frame--different formats are needed

# for different models (‘keras‘ only takes matrices for example)

dtm_train_matrix <- as.matrix(dtm_train)

dtm_test_matrix <- as.matrix(dtm_test)

dtm_train_df <- as.data.frame(dtm_train_matrix)

dtm_test_df <- as.data.frame(dtm_test_matrix)

The data wrangling and feature extraction is now complete. Our features exist in

the form of Document Term Matrices where each column represents a term, each row

represents a PolitiFact article, and each cell holds the term frequency–inverse document

27Analyzing Texts with the Text2vec Package (n.d.)
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frequency value of that term. Our targets exist as 0’s and 1’s, where a “false” piece of news

corresponds to 0 and a “true” piece of news corresponds to 1. We observe a small portion

of our training and testing DTMs below. Note that each value is 0 since our vocabulary

contains 3000 terms and it is very unlikely that the first 5 terms are in any of the 10

different rows we are looking at.

dtm_train_df[1:5, 1:5]

## account affair affect africanamerican agree

## 1 0 0 0 0 0

## 3 0 0 0 0 0

## 6 0 0 0 0 0

## 8 0 0 0 0 0

## 9 0 0 0 0 0

dtm_test_df[1:5, 1:5]

## account affair affect africanamerican agree

## 2 0 0 0 0 0

## 4 0 0 0 0 0

## 5 0 0 0 0 0

## 7 0 0 0 0 0

## 12 0 0 0 0 0
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7.2 Initial Model Fitting

This section displays the code for each of the initial models fit in an attempt to classify

fake news.

7.2.1 Naive Bayes

We can use the e1071 package to run a Naive Bayes model. Note that the e1071::naiveBayes

function requires categorical targets and accepts features in the form of a dataframe.

# applying Naive Bayes model to training data

nb_model <- e1071::naiveBayes(x = dtm_train_df, y = train_targets_categorical,

laplace = 1)

# predicting applying to test set

nb_predicted_values <- predict(nb_model, dtm_test_df)

nb_confusion_matrix <- caret::confusionMatrix(nb_predicted_values,

test_targets_categorical,

dnn = c("Predicted", "Actual"))

# confusion matrix table

nb_confusion_matrix$table

## Actual

## Predicted 0 1

## 0 137 104

## 1 48 94

# 60.3% accuracy

round(nb_confusion_matrix$overall[1], 3)

## Accuracy

## 0.603

29



# [55.2%, 65.2%] 95% CI for accuracy

round(nb_confusion_matrix$overall[3:4], 3)

## AccuracyLower AccuracyUpper

## 0.552 0.652

# for full information, uncomment and run the following line of code:

# nb_confusion_matrix

Our Naive Bayes model performs rather poorly with an accuracy of only 60.3% (and a

95% confidence interval of [55.2%, 65.2%]).

7.2.2 Basic Logistic Regression

Since the glm function requires a formula, we must create a new dataframe combining our

features and targets. Note that the glm function requires categorical targets.

# logistic regression data frames (training and testing)

lr_df_train <- cbind(dtm_train_df, train_targets_categorical)

lr_df_test <- cbind(dtm_test_df, test_targets_categorical)

We now fit the logisitic regression model and calculate its accuracy.

# fit the basic logistic regression model

blr_model <- glm(train_targets_categorical ~ ., data = lr_df_train,

family = binomial(link = "logit"))

# calculated the predicted value probabilities (which gives us

# the probability that an observation is classified as 1)

blr_predicted_value_probs <- predict(blr_model, newdata = lr_df_test,

type = "response")

# turn the probabilites into 1’s or 0’s--if the probability of being a 1
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# is greater than 50%, turn it into a 1 (turn it into a 0 otherwise)

blr_predicted_values <- as.factor(ifelse(blr_predicted_value_probs > 0.5, 1, 0))

blr_confusion_matrix <- caret::confusionMatrix(blr_predicted_values,

test_targets_categorical,

dnn = c("Predicted", "Actual"))

# confusion matrix table

blr_confusion_matrix$table

## Actual

## Predicted 0 1

## 0 102 63

## 1 83 135

# 61.9% accuracy

round(blr_confusion_matrix$overall[1], 3)

## Accuracy

## 0.619

# [56.8%, 66.8%] 95% CI for accuracy

round(blr_confusion_matrix$overall[3:4], 3)

## AccuracyLower AccuracyUpper

## 0.568 0.668

Our basic logistic regression model performs rather poorly with an accuracy of only

61.9% (and a 95% confidence interval of [56.8%, 66.8%]).
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7.2.3 Logistic Regresion with L1 penalty (Lasso Regression)

This model is an improved form of logistic regression using an L1 regularization penalty

and 5-fold cross-validation using the glmnet package. Logistic regression using an L1 regu-

larization is also known as “Lasso regression”. Lasso regression shrinks the less important

features’ coefficients to zero, thus removing some features altogether.28 This works well for

feature selection when there are a large number of features, as in our case (we have 806

features).

N-fold cross-validation (here n = 5) is used to “flag problems like overfitting or selection

bias and to give an insight on how the model will generalize to an independent dataset.”29

The cv.glmnet function from the glmnet function is used here to perform the Lasso

regression and 5-fold cross-validation discussed above. Note that our features must be in

the form of a matrix here (not a dataframe) and our targets must be numerical.

num_folds <- 5

threshold <- 1e-4

max_num_it <- 1e5

# manually compute our folds so below model doesn’t vary each time it’s run

set.seed(2)

fold_id <- sample(rep(seq(num_folds), length.out = nrow(dtm_train_matrix)))

# use cross validation to determine the optimal lambda value for L1 penalty

lasso_model <- cv.glmnet(x = dtm_train_matrix, y = train_targets_numerical,

# this gives us logistic regression

family = "binomial",

# L1 penalty

alpha = 1,

# interested in the area under the ROC curve

type.measure = "auc",

28Nagpal (2017)
29Cross-Validation (Statistics) (2020)
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# 5-fold cross-validation

nfolds = num_folds,

# manually create our folds for reproducibility

foldid = fold_id,

# a higher threshold is less accurate,

# but has faster training

thresh = threshold,

# a lower number of iterations is less accurate,

# but has faster training

maxit = max_num_it)

lasso_predicted_value_probs <- predict(lasso_model, dtm_test_matrix,

type = "response")

lasso_predicted_values <- as.factor(ifelse(lasso_predicted_value_probs > 0.5, 1, 0))

lasso_confusion_matrix <- caret::confusionMatrix(lasso_predicted_values,

test_targets_categorical,

dnn = c("Predicted", "Actual"))

# confusion matrix table

lasso_confusion_matrix$table

## Actual

## Predicted 0 1

## 0 91 22

## 1 94 176

# 69.7% accuracy

round(lasso_confusion_matrix$overall[1], 3)

## Accuracy
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## 0.697

# [64.8%, 74.3%] 95% CI for accuracy

round(lasso_confusion_matrix$overall[3:4], 3)

## AccuracyLower AccuracyUpper

## 0.648 0.743

Our logistic regression model using an L1 regularization penalty performs significantly

better than our basic logistic regression model. This logistic regression model has an

accuracy of 69.7% (and a 95% confidence interval of [64.8%, 74.3%]).

7.2.4 Support Vector Machine

We can use the e1071 package to run a Support Vector Machine (SVM). Note that the

randomForest function requires categorical targets and accepts features in the form of a

dataframe.

svm_model <- e1071::svm(x = dtm_train_df, y = train_targets_categorical,

type = "C-classification", kernel = "sigmoid")

svm_predicted_values <- predict(svm_model, dtm_test_df)

svm_confusion_matrix <- caret::confusionMatrix(svm_predicted_values,

test_targets_categorical,

dnn = c("Predicted", "Actual"))

# confusion matrix table

svm_confusion_matrix$table

## Actual

## Predicted 0 1

## 0 113 46

## 1 72 152
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# 69.2% accuracy

round(svm_confusion_matrix$overall[1], 3)

## Accuracy

## 0.692

# [64.3%, 73.8%] 95% CI for accuracy

round(svm_confusion_matrix$overall[3:4], 3)

## AccuracyLower AccuracyUpper

## 0.643 0.738

Our SVM performs reasonably well with an accuracy of 69.2% (and a 95% confidence

interval of [64.3%, 73.8%]).

7.2.5 Random Forest

We can use the randomForest package to run a Naive Bayes model. Note that the

randomForest function requires categorical targets and accepts features in the form of

a dataframe.

set.seed(2)

rf_model <- randomForest(x = dtm_train_df, y = train_targets_categorical)

rf_predicted_values <- predict(rf_model, dtm_test_df)

rf_confusion_matrix <- caret::confusionMatrix(rf_predicted_values,

test_targets_categorical,

dnn = c("Predicted", "Actual"))

# confusion matrix table

rf_confusion_matrix$table
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## Actual

## Predicted 0 1

## 0 124 51

## 1 61 147

# 70.8% accuracy

round(rf_confusion_matrix$overall[1], 3)

## Accuracy

## 0.708

# [65.9%, 75.3%] 95% CI for accuracy

round(rf_confusion_matrix$overall[3:4], 3)

## AccuracyLower AccuracyUpper

## 0.659 0.753

Our random forest model performs reasonably well with an accuracy of 70.8% (and a

95% confidence interval of [65.9%, 75.3%]).
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7.3 Deep Learning Model Fitting

This section displays the code for the deep learning models fit in an attempt to classify

fake news.

7.3.1 Multilayer Perceptron Neural Network

The keras package is used to fit a Multilayer Perceptron (MLP). Here, a MLP with one

input layer, one hidden layer, and one output layer is created. The keras requires features

to be stored in matrices and targets to be numerical.

Note that the keras package randomizes initial weights each time a model is run, mean-

ing that results will vary slightly each time the following two code chunks are run (specif-

ically, Figure 5 will change and the MLP model’s accuracy will change). The provided

function to ensure reproducibility in keras(which is named use session with seed())

does not currently work within a knitted R Markdown file. Additionally, using the normal

set.seed() function does not alleviate the issue. For a more detailed breakdown, I’ve cre-

ated a file outlining the problem that can be found in the directory scratch-work/keras-reprex.R.

set.seed(2)

num_features <- ncol(dtm_train_matrix)

# the input layer is implicitly added with input_shape

mlp_model <- keras_model_sequential() %>%

layer_dense(units = 8, activation = "relu", input_shape = c(num_features)) %>%

layer_dense(units = 1, activation = "sigmoid")

mlp_model %>% compile(

optimizer = "rmsprop",

loss = "binary_crossentropy",

metrics = c("accuracy")

)
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# use validation data to determine best number of epochs to run our MLP for

mlp_history <- mlp_model %>% keras::fit(

dtm_train_matrix, train_targets_numerical,

epochs = 15,

batch_size = 1,

validation_split = 0.2

)
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Figure 5: Validation data performance over multiple epochs in a MLP model

Figure 5 shows us how our validation data performs as our MLP performs multiple

feedforward/backpropagation epochs. Since we want to minimize our validation data’s loss

and maximize our validation data’s accuracy, we observe that out 3 epochs seems to be

reasonable number of times to run our MLP (note that this may change due to the issue

mentioned above about random reproducibility in keras).
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set.seed(2)

mlp_model <- keras_model_sequential() %>%

layer_dense(units = 8, activation = "relu", input_shape = c(num_features)) %>%

layer_dense(units = 1, activation = "sigmoid")

mlp_model %>% compile(

optimizer = "rmsprop",

loss = "binary_crossentropy",

metrics = c("accuracy")

)

mlp_model %>% keras::fit(x = dtm_train_matrix, y = train_targets_numerical,

epochs = 3, batch_size = 1)

mlp_results <- mlp_model %>% evaluate(x = dtm_test_matrix, test_targets_numerical)

mlp_results

## loss accuracy

## 0.5983205 0.6919060

mlp_predicted_values <- mlp_model %>% predict_classes(dtm_test_matrix, batch_size = 1)

# confusion matrix

mlp_confusion_matrix <- caret::confusionMatrix(as.factor(mlp_predicted_values),

test_targets_categorical,

dnn = c("Predicted", "Actual"))

# confusion matrix table

mlp_confusion_matrix$table

## Actual
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## Predicted 0 1

## 0 111 44

## 1 74 154

# around 70% accuracy

round(mlp_confusion_matrix$overall[1], 3)

## Accuracy

## 0.692

# 95% CI

round(mlp_confusion_matrix$overall[3:4], 3)

## AccuracyLower AccuracyUpper

## 0.643 0.738

Our MLP performs reasonably well with an accuracy of around 70% (and a 95% confi-

dence interval around [65%, 75%]).

7.3.2 Recurrent Neural Network

The keras package is used to fit a Recurrent Neural Network (RNN). Here, a RNN with one

input layer, one long short-term memory (LSTM)30 layer, and one output layer is created.

The keras requires features to be stored in matrices and targets to be numerical. Note

that a RNN requires a different type of DTM representation (as mentioned previously)

where each word must be given a unique numerical ID so that a sense of sequence can be

maintained.

# the number of words to include in our vocab (keep the same as our other vocab)

vocab_size <- 806

30“LSTMs were developed to deal with the vanishing gradient problem that can be encountered when

training traditional RNNs.” Long Short-Term Memory (2020)
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# note that this tokenizer is based on the training data

rnn_tokenizer <- text_tokenizer(num_words = vocab_size) %>%

fit_text_tokenizer(politifact_df_train$article_text)

train_sequences <- texts_to_sequences(rnn_tokenizer, politifact_df_train$article_text)

test_sequences <- texts_to_sequences(rnn_tokenizer, politifact_df_test$article_text)

# pad sequences (add 0’s to the end) for documents that are short

rnn_x_train <- pad_sequences(train_sequences, padding = "post")

rnn_x_test <- pad_sequences(test_sequences, padding = "post")

# take a look at what a RNN DTM looks like

rnn_x_train[1:5, 1:5]

## [,1] [,2] [,3] [,4] [,5]

## [1,] 57 48 146 165 3

## [2,] 53 135 0 0 0

## [3,] 219 136 9 368 414

## [4,] 1 11 15 415 0

## [5,] 1 485 137 573 98

Now that we have our features in the right form (they have a notion of sequence), we

can fit our RNN.

set.seed(2)

rnn_model <- keras_model_sequential() %>%

layer_embedding(input_dim = vocab_size, output_dim = 64) %>%

layer_lstm(units = 128, dropout = 0.2, recurrent_dropout = 0.2) %>%

layer_dense(units = 1, activation = "sigmoid")
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rnn_model %>% compile(

optimizer = "adam",

loss = "binary_crossentropy",

metrics = c("accuracy")

)

batch_size <- 64

epochs <- 15

validation_split <- 0.1

rnn_history <- rnn_model %>% keras::fit(

rnn_x_train, train_targets_numerical,

batch_size = batch_size,

epochs = epochs,

validation_split = validation_split

)
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Figure 6: Validation data performance over multiple epochs in a RNN model

Figure 6 shows us how our validation data performs as our RNN performs multiple

feedforward/backpropagation epochs Since we want to minimize our validation data’s loss

and maximize our validation data’s accuracy, we observe that out 3 epochs seems to be

reasonable number of times to run our MLP (note that this may change due to the issue

mentioned above about random reproducibility in keras).

# recompile model

rnn_model <- keras_model_sequential() %>%

layer_embedding(input_dim = vocab_size, output_dim = 64) %>%

layer_lstm(units = 128, dropout = 0.2, recurrent_dropout = 0.2) %>%

layer_dense(units = 1, activation = "sigmoid")

rnn_model %>% compile(

optimizer = "adam",
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loss = "binary_crossentropy",

metrics = c("accuracy")

)

rnn_model %>% keras::fit(rnn_x_train, train_targets_numerical, epochs = 3, batch_size = batch_size)

rnn_results <- rnn_model %>% evaluate(rnn_x_test, test_targets_numerical)

rnn_predicted_values <- rnn_model %>% predict_classes(rnn_x_test, batch_size = batch_size)

# Confusion matrix

rnn_confusion_matrix <- caret::confusionMatrix(as.factor(rnn_predicted_values),

test_targets_categorical,

dnn = c("Predicted", "Actual"))

# confusion matrix table

rnn_confusion_matrix$table

## Actual

## Predicted 0 1

## 0 117 46

## 1 68 152

# around 68% accuracy

round(rnn_confusion_matrix$overall[1], 3)

## Accuracy

## 0.702

# 95% CI around (0.64, 0.73)

round(rnn_confusion_matrix$overall[3:4], 3)

## AccuracyLower AccuracyUpper

## 0.654 0.748
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Our RNN performs reasonably well with an accuracy of around 68% (and a 95% confi-

dence interval around [63%, 73%]).
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